Adaptive Metric-Aware Job Scheduling for
Production Supercomputers

Wei Tang,’ Dongxu Ren,* Narayan Desai,’ Zhiling Lan*
T Argonne National Laboratory, *lllinois Institute of Technology

Sep 10, 2012

o Motivation
@ Solutions
o Experiments

e Summary & Future Work

Motivation
°

Motivation

Job scheduler is an important component on supercomputers

@ prioritizing queue for user satisfaction
e making efficient use of resources

Motivation
°

Motivation

Job scheduler is an important component on supercomputers

@ prioritizing queue for user satisfaction
e making efficient use of resources

<

Problem 1: scheduling goals are various

o Different goals from user and system owner

@ Related but conflicting

Motivation
°

Motivation

Job scheduler is an important component on supercomputers

@ prioritizing queue for user satisfaction
e making efficient use of resources

<

Problem 1: scheduling goals are various

o Different goals from user and system owner

@ Related but conflicting

v

Problem 2: workload characteristics are amorphous

o Effectiveness of a scheduling policy depends on workloads

@ But, workload characteristics keep changing unpredictably

Motivation
°

Motivation

Job scheduler is an important component on supercomputers

@ prioritizing queue for user satisfaction
e making efficient use of resources

Problem 1: scheduling goals are various

o Different goals from user and system owner

@ Related but conflicting

Problem 2: workload characteristics are amorphous

o Effectiveness of a scheduling policy depends on workloads

@ But, workload characteristics keep changing unpredictably

Thus, it's hard to design a versatile scheduling policy

Solutions
0

Solution Overview

Adaptive Metric-Aware Scheduling Framework J

Solutions
0

Solution Overview

Adaptive Metric-Aware Scheduling Framework J

Metric-aware job scheduling

@ balance different interests by metrics

@ e.g., queuing effiency, fairness, system utilization and cost

Solutions
0

Solution Overview

Adaptive Metric-Aware Scheduling Framework J

Metric-aware job scheduling

@ balance different interests by metrics

@ e.g., queuing effiency, fairness, system utilization and cost

Adaptive policy tuning

@ dynamically tune scheduling policy based on feedback

@ mitigate the impact of varying workload characteristics

A\

Solutions
0

Solution Overview

Adaptive Metric-Aware Scheduling Framework J

Metric-aware job scheduling

@ balance different interests by metrics

@ e.g., queuing effiency, fairness, system utilization and cost

Adaptive policy tuning

@ dynamically tune scheduling policy based on feedback

@ mitigate the impact of varying workload characteristics

A\

Provide a balanced and sustainable scheduling mechanism

Diagram of our solution

Solutions
oce

i

metrics balancer

=

metrics monitor

scheduling algorithm
seiikain —/

Figure : Diagram of adaptive metric-aware job scheduling framework.

Solutions
®00000

Metric overview

o Quantified criteria

o Reflecting certain interest from either user or system

e User satisfaction
e job waiting time
e slowdown
o fairness
e etc

e System perspective
system utilization rate
e resource fragmentation
e power efficiency

e etc

6/28

Solutions
©0®0000

To be balanced

Balance is needed everywhere!

Happiness Queue fairness
\ real life HPC /
Health Wealth Queue efficiency System utilization

Solutions
00®000

What to balance

METRICS TO BE BALANCED

@ Queuing efficiency

e regarding the time of job waiting
e avg. job waiting, response time, slowdown, etc

@ Queuing fairness

e no later-arrival jobs should delay early ones
e psychologically, fairness is more important than efficiency

@ System utilization

e make efficient use of resources, minimizing wasted core-hours
e system utilization rate, loss of capacity

Solutions
000e®00

Flaws of existing ways of scheduling

e FCFS (first come, first served)
e good for fairness
e bad for job waiting
e prone to fragmentation

@ SJF (short job first)
e minimizing average waiting
e bad for fairness
e prone to starvation

@ MXF (maximum x-factor first)
e prioritizing by waittime/runtime
e act in between FCFS and SJF
e cannot balance at will

e Job allocation scheme

o allocate jobs one by one in queue order
e job allocation loses flexibility after jobs sorting

Solutions
0000e0

Our approach to balance

e Balance factor (BF) in job sorting

o BF tunable from 0 to 1.

e tune queuing policy between FCFS
(BF=1) and SJF (BF=0)

o balance between fairness and
efficiency

10/28

Solutions
0000e0

Our approach to balance

e Balance factor (BF) in job sorting
o BF tunable from 0 to 1.
e tune queuing policy between FCFS
(BF=1) and SJF (BF=0)
o balance between fairness and
efficiency

o Window based job allocation.

o after sorting, group jobs by window
size W (W > 1)

o jobs within the same window can be
allocated as a whole (no priority
difference)

o a larger window provides more
flexibility to pack jobs

Figure : An example

~v

showing the limitation of

allocating jobs one by
one. (a) one-by-one in
queue order; (b) as a
whole (W=3)

10/28

Solutions
oooooe

Scheduling Algorithm

(]

Step 1: calculate waiting score for job i/, mapping to [0,100]
o S, =100 x —wait_

Waitmax

Step 2: calculate walltime score for job i, mapping to [0,100]

_ walltimep,,, — walltime;
° Sr =100 x walltimepmax — walltime i,

Step 3: calculate balanced priority score
o S, =BF xS,+(1-BF)xS,

@ Step 4: sort all jobs by their balanced priority S,

@ Step 5: group jobs with window size W, for each window try
job allocation. Select one schedule with minimum makespan.

@ Step 6: make another pass to backfill remaining jobs

11/28

Solutions
®00

Adaptive policy tuning

@ Why adaptive tuning

e scheduling policy depends on workload characteristics
e to counter the impact of workload variation

o Existing ways addressing workload variation

e event-driven simulation on historical data (offline method)
e or just ignore... (unfortunately this dominates)

@ Our proposed tuning scheme
e monitor interested metrics at runtime
e adjust arguments of scheduling policies based on feedback
o periodically check and adjust (e.g. every 30 minutes)

12/28

Solutions
oe0

Parameters

@ To configure a scheme for adaptive policy tuning, several
parameters should be determined
e what to tune, when to tune, how much to tune, etc

Table : Parameters to configure an adaptive scheme

Para.

Description

Possible values

D?u”"i'ib?i\l

tunable

initial value of tunable

the incremental value to tune T
monitored metrics

threshold of M

event triggering T plus A
event triggering T minus A
interval between check points

BF or W

1 for both BF and W
0.5 for BF or 1 for W
queue status or sys. util.
(historical statistics)

M reaches TH

M reaches TH reversely
30 minutes

13 /28

Solutions
ooe

Algorithm

Algorithm 1: adaptive scheduling

T=T; // initialize the tunable
while True do
if now — last_checked > C; then // at check point
m = get_monitored_values(); // get values of M
e = check_event(m); // compare feedback with TH
if e == E, then
‘ T=T+A; // increase tunable by A
end
if e == E,, then
T=T-A; // decrease tunable by A
end
last_checked = now ; // reset check point clock
end
schedule_jobs(T) ; // do real scheduling stuff
sleep(SchedInterval) ; // sleep for several seconds

end

14 /28

o Experiments

Experiments
[1}

Experiment setup

@ Cobalt resource management system
e http://trac.mcs.anl.gov/projects/cobalt/

Simulation based evaluation (Qsim)
Real workload from production BG/P at ANL
163,840 cores, 9300 jobs

16 /28

Experiments
oce

Metrics

o Average waiting time
o time between job submission and job start (all job average)

@ Queue depth
e the sum of waiting times of all current queuing jobs
o high queue depth means either a large number of waiting jobs
or some jobs enduring long wait or both
e Unfair jobs
e the number of jobs delayed by later arrival jobs
e Utilization rate
e the ratio of delivered core-hours to total core-hours
o Loss of capacity

e the ratio of idle core-hours while there are jobs waiting to the
total core-hour
o wasted system utilization (by fragmentation)

17/28

Experiments
©0000000

Metrics balance with balance factor and window size

avg. wait minutes (BG/P) # of unfair jobs (BG/P) loss of capacity (BG/P)
250 140 18%
120 17%
200 100 16%
-\W=1 9, -1
150 w2 80 o -075
-3 0 14% .05
100 e W= 13% 025
=5 40 12% =0
50
20 1%
0 0 10%
1 0.75 05 0.25 0 1 0.75 05 0.25 0 w=1 w=2 w=3 w=4 W=5
balance factor balance factor window size
(a) (b) (c)

Figure : The effect of using balance factor and window size (BG/P)

28

Experiments
0®000000

Metrics balance with balance factor and window size

120-140
=200-250 =100-120
150200 m80-100
100150 W60-80
m50-100 40-60
=050 m20-40

=020

(b) unfair job

H15.0%16.0%
" 14.0%15.0%
H13.0%14.0%
H12.0%13.0%
110%12.0%
10.0%11.0%

(c) loss of capacity

19/28

Experiments
[e]eX Yololelele]

Configuration for adaptive scheduling

BF wW
1 1
0.5 4

queue depth (Q) system utilization rate
d=Q — Avg(lm) | § = Avg(10h) — Avg(24h)
6i_1>0&6; <0 | 61 <0&H; >0
5;_1<0&(5,'>0 5,'_1>0&5,'<0

30 minutes 30 minutes

ofmmITe A~

@ Avg(X) means the average value during last X period of time, e.g.
10 hours, 24 hours, 1 month.

@ §; and §;_1 means the checked value at current and last check
point, respectively.

20 /28

Experiments
[eIeTeY Tolelele]

Queue depth influenced by tuning balance factor (BG/P)

== BF=1 —BF=0.75 —BF=0.5 ==BF Adaptive
90000
80000
70000
60000
50000
40000
30000
20000
10000

queue depth (minutes)

hours elapsed

(d) queue depth

== BF=1 —BF=0.75 —BF=0.5 ==BF Adaptive
100000

10000
1000

100

queue depth (minutes)

[50 100 150 200

hours elapsed

(e) queue depth (logarithm scale) 21/28

Experiments
0000®000

Monitoring of system utilization rate (BG/P)

=~Instant == 1H ==10H ==24H

hours elapsed

(c) W=Adaptive

22/28

Experiments
00000®00

2D adaptive tuning (BG/P)

== BF=1 == BF=0.75 **BF=0.5 — BF Adaptive ==2D Adaptive

100000

E 10000
E 1000
f% 100
3 10 _:
2D ADAPTIVE TUNING s i
! 0 50 100 1;0 200
@ tune both BF and W hourselapsed
simualtanously (a) queue depth

wwinstant —1H ==10H =24H

@ each follows respective
configuration

@ influential to both
queue depth and system
utilization

0 50 100 150 200
hours elapsed

(b) system utilization rate s /og

Experiments
000000e0

Overall improvement (BG/P)

Table : Improvement of adaptive tuning (BG/P)

configuration | avg. wait | unfair | LoC
(min) # | (%)
BF=1/W=1 245.2 10 | 15.7
BF=1/W=4 221.6 18 | 124

BF=0.5/W=1 | 77.9 39 |158
BF=0.5/W=4 | 70.4 49 | 139
BF Adapt. 74.1 21 |12.8
W Adapt. 198.1 16 | 11.9
2D Adapt. 71.3 19 | 121

Compared with baseline, 2D Adapt saves avg. wait by 71%,
reduces LoC by 23%, and doubles unfair jobs (much less than the
case (BF=0.5/W=4) with comparable improvement).

24 /28

Experiments
0000000Oe

Performance of scheduler

Table : Runtime per scheduling iteration (sec)

window size | executing time
w=1 0.021
W=2 0.034
Ww=3 0.069
W=4 0.117
W=5 0.584

The scheduling iteration is triggered about every 10 seconds in real
systems (e.g. in Cobalt), thus a scheduling iteration less than 1
second is affordable.

25 /28

Summary
®00

Summary

e Proposed adaptive metric-aware job scheduling

e metric-aware job scheduling to balance competing objectives

e adaptive policy tuning to counter the impact of varying
workload characteristics

e Conducted simulation-based experiments

o tested real workloads from multiple supercomputing centers

e examined a variety of metrics such as job waiting time, queue
depth, fairness, system utilization rate, and loss of capacity

e demonstrated our scheduling methods improve system
performance in a balanced and sustainable fashion

26 /28

Summary
oeo

Future work

e Optimize window-based job allocation algorithm

e to support larger window with limited overhead

e consider distributed algorithms

e Employ feedback-control theory

e to consolidate the adaptive policy tuning

e Expand the spectrum of metrics to be balanced

e especially for systems cost such as energy consumption, system
reliability, etc

27 /28

	Motivation
	motivation

	Solutions
	Overview
	Metric-aware job scheduling
	Adaptive policy tuning

	Experiments
	Experiment
	Results

	Summary
	summary

